skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Inhye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Macrophages are specialized phagocytes that play central roles in immunity and tissue repair. Their diverse functionalities have led to an evolution of new allogenic and autologous macrophage products. However, realizing the full therapeutic potential of these cell‐based therapies requires development of imaging technologies that can track immune cell migration within tissues in real‐time. Such innovations will not only inform treatment regimens and empower interpretation of therapeutic outcomes but also enable prediction and early intervention during adverse events. Here, phase‐changing nanoemulsion contrast agents are reported that permit real‐time, continuous, and high‐fidelity ultrasound imaging of macrophages in situ. Using a de novo designed peptide emulsifier, liquid perfluorocarbon nanoemulsions are prepared and show that rational control over interfacial peptide assembly affords formulations with tunable acoustic sensitivity, macrophage internalization, and in cellulo stability. Imaging experiments demonstrate that emulsion‐loaded macrophages can be readily visualized using standard diagnostic B‐mode and Doppler ultrasound modalities. This allows on‐demand and long‐term tracking of macrophages within porcine coronary arteries, as an exemplary model. The results demonstrate that this platform is poised to open new opportunities for non‐invasive, contrast‐enhanced imaging of cell‐based immunotherapies in tissues, while leveraging the low‐cost, portable, and safe nature of diagnostic ultrasound. 
    more » « less
  3. Abstract Non‐invasive imaging modalities that identify rupture‐prone atherosclerotic plaques hold promise to improve patient risk stratification and advance early intervention strategies. Here, phase‐changing peptide nanoemulsions are developed as theranostic contrast agents for synchronous ultrasound detection and therapy of at‐risk atherosclerotic lesions. By targeting lipids within atherogenic foam cells, and exploiting characteristic features of vulnerable plaques, these nanoemulsions preferentially accumulate within lesions and are retained by intraplaque macrophages. It is demonstrated that acoustic vaporization of intracellular nanoemulsions promotes lipid efflux from foam cells and generates echogenic microbubbles that provide contrast‐enhanced ultrasound identification of lipid‐rich anatomical sites. In Doppler mode, stably oscillating peptide nanoemulsions induce random amplitude and phase changes of the echo wave to generate transient color imaging features, referred to as ‘twinkling’. Importantly, acoustic twinkling is unique to these peptide emulsions, and not observed from endogenous tissue bubble nuclei, generating diagnostic features that offer unprecedented spatial precision of lesion identification in 3D. 
    more » « less